ENAMINE PHOSPHONATES: THEIR USE IN THE SYNTHESIS OF α,β-ETHYLENIC KETIMINES AND THE CORRESPONDING KETONES Mohinder S. Chattha and Adam M. Aguiar¹ Department of Chemistry, Tulane University New Orleans, Louisiana 70118 (Received in USA 8 March 1971; received in UK for publication 30 March 1971)

As a continuation of our interest in the chemistry of phosphorus(V) enamines,² we wish to report the usefulness of enamine phosphonates <u>2</u> in the preparation of α,β -ethylenic ketones <u>4</u>. Reported information on the preparation of compounds like <u>2</u> is rather limited.^{3,4,5} We have found that <u>2</u> can be prepared in essentially quantitative yields by the addition of a primary amine to diethyl alkynyl-l-phosphonates (<u>1</u>). Treatment of <u>2</u> with NaH followed by addition of a carbonyl compound produces ketimines <u>3</u> in good to excellent yields; and hydrolysis of <u>3</u> yields <u>4</u> as outlined below.

$$\begin{array}{cccccccc} & & & & & & & \\ (H_{5}C_{2}O)_{2}PC = C - R & & & & \\ \hline H_{5}C_{2}O)_{2}PC = C - R & & & \\ \hline H_{5}C_{2}O)_{2}PC = C - R & & & \\ \hline H_{5}C_{2}O)_{2}PC = C - R & & & \\ \hline H_{5}C_{2}O)_{2}PC = C - R & & \\ \hline H_{5}C_{2}O)_{2}O = C - R & & \\ \hline H_{5}C_{2}O = C - R & & \\ \hline H_{5}C_{2}O = C - R & & \\ \hline H_{5}C_{2}O = C - R & & \\ \hline H_{5}C_{2}O = C - R & & \\ \hline H_{5}C_{2}O = C - R & & \\ \hline H_{5}C_{2}O = C - R & & \\ \hline H_{5}C_{2}O = C - R & & \\ \hline H_{5}C_{2}O = C - R & & \\ \hline H_{5}C_{2}O = C - R & & \\ \hline H_{5}C_{2}O = C - R & & \\ \hline H_{5}C_{2}O = C - R & \\ \hline H_{5}C_{2}O = C - R & & \\ \hline H_{5}C_{2}O = C - R & \\ \hline H_{5}C_{2}O = C - R & & \\ \hline H_{5}C_{2}O = C - R & & \\ \hline H_{5}C_{2}O = C - R & & \\ \hline H_{5}C_{2}O = C - R & \\ \hline H_{5}C_{2}O = C - R & & \\ \hline H_{5}C_{2}O = C - R & & \\ \hline H_{5}C_{2}O = C - R & & \\ \hline H_{5}C_{2}O = C - R & \\ \hline H$$

Compound <u>1</u> was dissolved in ten-twelve molar excess of amine and refluxed for 2-3 days until the ir spectrum of the reaction mixture showed a complete disappearance of absorption in the region of 4.55 μ (C=C) and appearance of a strong absorption at 6.25 μ (C=C). Excess amine was evaporated <u>in vacuo</u>. The resulting adduct was dissolved in THF, treated at 0° C with an equivalent amount of NaH and then with the carbonyl compound. The mixture was stirred at 0° C for 1 hr and then at room temperature for 5-6 hr. The resulting <u>3</u> was purified in one case (R = R¹ = <u>n</u>-C₄H₉, R² = C₀H₅, R³ = H); in all other cases, <u>3</u> was hydrolyzed directly to <u>4</u> by stirring an ethereal solution with 2% aqueous oxalic acid. Ketones <u>4</u> produced in this manner are listed in Table I.

			TABLE I		
PREPARATION OF R2R3C=CH-C-R (4) FROM R2R3CO AND ENAMINES 2					
Enam R	ine <u>2</u> R ¹	Aldehyde or Ketone	α,β-ethylenic Ketone	Yield ^a (%)	Mp or Bp °C (mm)
n-C3H7	CeH11	C ₆ H ₅ CHO	$C_8H_5-CH=CH-CO-C_3H_7-n$	55	90-1 (0.10)
n-C ₄ H ₉	n-C ₄ H ₉	C ₆ H ₅ CHO	$C_{e}H_{5}$ -CH=CH-CO-C ₄ H ₉ -n	65	95-8 (0.05)
CH3	n-C ₄ H ₉	Н₃СО-О)-СНО	H3CO-O-CH=CH-CO-CH3	66	110-12 (0.06)
n-C3H7	CeH11	НзСО-ОО-СНО	H ₃ CO-O-CH=CH-CO-C ₃ H ₇ -n	60	131-2 (0.07)
CeHs	CeH11	НзСО-⊙-СНО	H ₃ CO-O-CH=CH-CO-C ₆ H ₅	53	75-6
CH3	C6H11	C ₆ H ₅ -CO-CH ₃	CH3 CeH5-C=CH-CO-CH3	46	60-1 (0.05)
n-C ₄ H ₉	n-C ₄ H ₉		CH-CO-C ₄ H ₉ -n	67	66-70 (0.06) ^b

a. This is the yield of the distilled or recrystallized material based upon <u>1</u>. b. The product is found to be a mixture of α , β - and β , γ -ethylenic ketones.

Compounds <u>1</u> were prepared by treating diethylphosphorochloridate with alkynylmagnesium bromides in ether at 0° C.

<u>Acknowledgment</u>. We wish to acknowledge National Institutes of Health support of this work under Grant GM-16828 and the National Science Foundation under Grant GP-10739. We also thank Dr. Joseph A. Kuczkowski for his useful suggestions during the course of this work.

REFERENCES

1. To whom correspondence should be addressed.

- 2. C. J. Morrow, Ph.D. Dissertation, Tulane University, New Orleans, La., 1970.
- 3. B. C. Saunders and P. Simpson, <u>J. Chem. Soc</u>., 3464 (1963).
- A. N. Pudovik, N. G. Khusainova and A. B. Agreeva, <u>Zh. Obshch. Khim.</u>, <u>34</u>, 3938 (1964).
- 5. W. Nagata and Y. Hayase, Tetrahedron Lett., 4359 (1968).